If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-c-4=0
We add all the numbers together, and all the variables
c^2-1c-4=0
a = 1; b = -1; c = -4;
Δ = b2-4ac
Δ = -12-4·1·(-4)
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{17}}{2*1}=\frac{1-\sqrt{17}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{17}}{2*1}=\frac{1+\sqrt{17}}{2} $
| 3x²-21x+7=0 | | 4(7x-8)=-3(-7x-8) | | y=4.5y-y | | 28x-32=21x-24 | | y+-2=-3 | | 11+(x)=7-(4x) | | 108-y=214 | | 1.5(10-4d)=-27 | | x*5/2=25 | | -3u/7=-18 | | 6z/9=9 | | 2c+10=9c–25 | | 7f/2=1 | | 9c–25=V | | -3u/7=-17 | | 5x*8=-32 | | 4x=-8/3 | | 61+61+u=180 | | 4(3−w)=3w−2 | | 2a+59=180 | | 3x+21=6x-30 | | 3(2n-1)n=3 | | (x^2+9)^3=0 | | 40+2c=180 | | 10x-6=7x+5 | | -3(2x-4)=4(3/4x-3) | | 4n-1=2n+9 | | 3y+-11=8+-4y | | 74+2c=180 | | 15^x=615 | | 3x+¹+3x+³=270 | | 2(b-4)=3(b-2) |